“Municipal Climate Change Adaptation and Resilience Pilot Project in Hamilton, Ontario”

Nahed Ghbn
Infrastructure Planning and Systems Design
Presentation Overview

- About City of Hamilton
- Hamilton’s Stormwater Management Systems
- Extreme Events & Precipitation
- Climate Change Challenges, Mitigation & Adaptation
- Hamilton Pilot Project for Environmental and Infrastructure Vulnerabilities from Climate Change
- Goal, Objectives & Methodology
- Modeling Approach
- Preliminary Results, Potential Impact & Mitigation Measures
City of Hamilton, Ontario
Existing Stormwater Management

- 3 Interceptors
- >600 km combined sewers
- Woodward Ave. Wastewater Treatment Plant
- 8 CSO Storage Tanks (300,000 m³)
- 1 CSO storage tunnel
- 130 Engineered Stormwater Ponds

Stormwater System
- Conveyance
- Control
- Treatment
Stormwater Management Systems

Combining Sewer Area

- Rain / Snowmelt
- Land Drainage
- Sanitary Waste
- Roadway
- Combined Sewer
- Overflow during Rain / Snowmelt

Separate Sewer Area

- Rain / Snowmelt
- Land Drainage
- Sanitary Sewer
- Roadway
- Land Drainage Sewer
- Treated Effluent
- Receiving Waters
Stormwater Management
Conveyance
Stormwater Management Control
Stormwater Management Treatment

- Preliminary Treatment
- Primary Treatment
- Secondary Treatment
- Solids Handling
- Disinfection
Extreme Events are not out of the ordinary any more

4 Extreme Events in 6 years – City of Hamilton
3 Extreme Events in 1 year – Windsor
2 Extreme Events in 2 weeks – Newmarket
4 Extreme Events in 4 Years – Ottawa
4 Extreme Events in 10 years – Mississauga/Toronto

Since 1995 a state of emergency almost every year in Ontario
Example of Extreme Events
(July 2009)
Climate Change Challenge

- How is the climate changing and how to measure the change?

- What are the causes and consequences of climate change?

- How will climate change impact existing infrastructure and environmental features?

- What are our strategies to deal with climate change?
Climate Change Mitigation & Adaptation (City of Hamilton)

Adaptation
- Planning ahead to reduce negative and maximize positive impacts

Mitigation
- Reduction of GHG emissions

- Hamilton Climate Change and Storm Events Adaptation Plan
- Hamilton Community Climate Change Action Plan
- *Environmental and Infrastructure Vulnerabilities from Climate Change-Spencer Creek Watershed. “Pilot Showcasing Program”*
“Environmental and Infrastructure Vulnerabilities from Climate Change- Pilot Project Hamilton, Ontario”

Brian Hindley, Environmental Studies Specialist, Matrix Solutions Inc.
Nahed Ghbn, Senior Project Manager, City of Hamilton
Jonathan Bastien, Water Resources Engineering, Hamilton Conservation Authority
Study Goal and Objectives

• Increase knowledge and awareness of sustainable water management for climate change:
  – Flood damage reduction
  – Stormwater runoff
  – Improved water quality
  – Increased awareness of urban water management
• Tasks:
  – Evaluate and select climate change models
  – Assess vulnerability of environmental and infrastructure features to climate change
  – Detailed hydrologic/hydraulic modeling of future climates
  – Erosion and Sedimentation Study
  – Increase the knowledge and awareness
Study Approach

• Review and compare predicted future values from several current climate models
• Generate a series of environmental indicators of temperature and precipitation change
• Downscale climate future values for use in hydrologic/hydraulic models
• Generate a series of future flood flows and stream characteristics indicative of threats to watershed infrastructure and environmental features
• Develop adaptation recommendations for future municipal/conservation authority policy and planning
Spencer Creek Watershed

- 230 km² Drainage Area
- Typical of Southern Ontario Streams
- Rural headwaters;
- Urban lower reaches
Environmental Features

- Fletcher’s Creek Swamp Forest
- Beverley Swamp
- Christie Reservoir
- Dundas Valley Forest
Infrastructure Features

- 14 Crossings
- Cootes Road
- McMurray Street
- Crookes Hollow
- Erosion, Foundations, other infrastructure
Future Climate Predictions

- Several models used to generate results
- Each model has strengths and weaknesses
- Data variability causes uncertainty in model results
- Need for expert judgement
- Analysis of trends, not absolutes
- Current policy/planning based on past not future trends
Climate Change Models

- Climate models selected:
  - CIMP5 ensemble – RCP 4.5/8.5
  - CanRCM4 – RCP 4.5/8.5
  - PRESIC ensemble
- Climate models typically generate continuous output – daily/weekly predicted values
- Hydrologic/Hydraulic models typically require continuous (hourly) and event-based (return frequency) input
- Model outputs downscaled and converted to hourly data for hydrologic/hydraulic modeling

- IDF curves typically generated from historic datasets to characterize rare events – time series flow datasets
- IDF curves for future climate values generated in 3 ways:
  - IDFCC tool Website (Western U)
  - Ontario IDF parameters – Ontario Climate Change & Data Portal
  - IDF curves generated from predicted continuous data values
Climate Datasets – Predicted Values

• Standard practice is to use multiple models to generate future predicted values – high uncertainty

  Projected Precipitation values

  Projected Temperature values

• Most Confident

  More CERTAINTY

  Long Term Trends in temperature and precipitation (Monthly/annually)

• Least / Less Confident

  Less CERTAINTY

  Short Term Trends in temperature and precipitation (Daily/weekly)

courtesy
Preliminary results Infrastructure

Sample of Projected “Family” of IDF Curves

- Results for frequent events are more certain
- Increases in magnitude of frequent events greater than infrequent event
- Trends not absolutes

Real story is that these infrequent events will occur more frequently!!!
Changes in Return Frequency of Flows:

- Increased magnitude of flows
- Substantial increase in frequency of current time series flows
- Less confidence in changes to 50+ flows
Preliminary Results
Infrastructure

Erosion Vulnerability:

- IDF curve trend indicates greatest change occurs for more frequent events – increase in magnitude and frequency

- Critical Flows – show a similar trend

- Increased erosion vulnerability means increased risk of erosion damage to infrastructure
Preliminary Results
Environmental Features

• Long term trends in temperature: increases in mean annual temperature, maximum summer temperatures, growing season length; reduction in winter minimum temperatures
• Long term trends in precipitation: increases in total annual precipitation, large events
• Greater evapotranspiration, less winter snowpack, shifts in monthly stream flow patterns
WHAT DOES IT ALL MEAN?
Environmental Features
Impacts of Climate Change

• Fletcher’s Wetland and Coldwater Stream:
  – Increasing potential threats to brook trout habitat – thermal effects
  – Increased potential for instream erosion
  – Potential Expansion of invasive wetland species

• Beverley Swamp
  – Increased evapotranspiration – Potential for reduced water levels
  – More temperature/precipitation extremes – potential expansion of invasive species, loss of rare species’ habitat
  – Less Snowpack/more evapotranspiration – Potential Loss of water storage function?

• Christie Reservoir
  – Potential for greater unpredictability in water management
  – Less snow pack; winter rain – potential for less water for baseflow maintenance
  – More variable spring reservoir levels – potential threats to fish spawning

• Dundas Forest
  – Less snowpack; winter rains – Potential threats to vernal pools and amphibian habitat
  – More evapotranspiration; greater storm intensity – potential threats to old growth forest; expansion of invasive species habitat
Infrastructure Vulnerability
Impacts of Climate Change

• Potential of increased erosion—potential threats to channel stability, bridge substructures
• Potential of increased frequency of floods—potential threats to flooding on roads; bridge conveyance capacity; associated infrastructure
• Potential changes to creek hydrology and hydraulics
Adaptation Measures
Possible actions to take?

• Environmental Features:
  – Enhanced monitoring
  – Restoration planning
  – Policies/planning
  – Species Management Plans

• Infrastructure
  – (Re)Define acceptable risks
  – Enhanced monitoring
  – Emergency Response
  – Design Guidelines
  – Operation and Maintenance Enhancement
  – Flood protection measures
  – Weather/ Rainfall forecast and prediction
Acknowledgements

Partners:

Hamilton

Hamilton Conservation Authority

RBC Blue Water Project

Matrix Solutions Inc.

Additional Support:

McMaster University

ONTARIO CLIMATE CONSORTIUM