Municipal Climate Adaptation in the Great Lakes Region:

Adaptation and Water, Wastewater and Stormwater:

Milwaukee and the Milwaukee Metropolitan Sewerage District

Karen L. Sands, AICP

Manager of Sustainability

Milwaukee Metropolitan Sewerage District

Today's Talk...

Brief MMSD Background

Climate Change Context

Adaptation

Milwaukee Metropolitan Sewerage District

We Serve:

- 1.1 Million Customers
- 28 Municipalities
- 411 Square Miles

Using Grey Infrastructure:

- Collector Sewers
- 2 Water Reclamation Facilities
- 521 MG Tunnel Storage

To Protect the Environment:

- Convey/Store/Reclaim Wastewater
- Manage Flooding
- Much More...

End Result!

Regional Climate Change Context: WICCI

Projected Change in the Frequency of 1" Precipitation Events (days/decade) from 1980 to 2055 (A1B)

Climate Change: Data Speaks for Itself

Kinnickinnic River top 5 crests:

- (1) 16.01 ft on 08/06/1986
- (2) 13.29 ft on 06/08/2008
- (3) 13.22 ft on 07/10/**2006**
- (4) 13.20 ft on 07/15/**2010**
- (5) 13.17 ft on 07/23/**2010**

MMSD's 2035 Vision and Strategic Objectives

Broad Strategic Objectives For:

- 1. Integrated Watershed Management
- 2. Climate Change
 Mitigation/Adaptation with an
 Emphasis on Energy Efficiency

MMSD's Overall Climate Change Strategy

MITIGATION Reduce carbon emissions & provide carbon "sinks"

PAST

Renewable Energy anaerobic digestion, solar

Green Infrastructure demonstrations

Carbon Footprint (2000-2007)

PRESENT

Renewable Energy landfill gas

Green Infrastructure widespread green roofs

Carbon Footprint targets, modeling, tracking, reporting Greenseams*

FUTURE

Renewable Energy anaerobic digestion, solar, wind

Green Infrastructurewidespread across the region

Carbon Footprint significant reduction Greenseams* expansion

ADAPTATION Anticipate changes to come & moderate effects

PAST

Climate Change participate in WI Initiative on Climate Change Impacts

Green Infrastructure demonstrations

Infastructure Design design based on history

PRESENT

Climate Change participate in WI Initiative on Climate Change Impacts

Green Infrastructure widespread green roofs

Infastructure Design design based on history

FUTURE

Climate Change expand modeling to look beyond CSO impacts

Green Infrastructure widespread across the region

Infastructure Design design based on history & future modeling

Climate Change Issues for MMSD

More frequent large storms

Longer drought periods in between storms

More precipitation falling on frozen ground

Others...

MMSD Adaptation Solutions

Flood management

Green infrastructure to infiltrate, hold,

evapotranspire

Vulnerability analysis

Flood Management: Lincoln Creek

- Concrete removal to naturalize channel
- Minimized floodplain
- Habitat enhancement

MMSD's Plan: What's So Groundbreaking?

- 0.5" of rainfall on imperviousness = 740 MG!
- Emphasizes combined & separate sewer service areas
- Supports private property inflow & infiltration
- Promotes turf grass with soil amendments
- Assumes we support but don't directly build

Milwaukee's Refresh and GI Baseline Inventory (GIBI) Reports

- Recommends an annual 10% volume increase
- Current implementation: 8 MG
- Additional designed/funded:
 19.5 MG
- Report is an inventory only, does not establish GI targets

MMSD's On-Going Programs

Climate Change Vulnerability Analysis

Identify High, Medium and Low Risks, Then...

Adapt:

- Take no-regrets actions, like:
 - Maximize onsite-generated power for ISS pumps
 - Consider sewer lining materials resistant to H2S
 - Maximize implementation of GI practices
- Take actions to address climate change

For Instance...

Falling lake levels dry foundation piles

Next Steps (besides GI)

- Monitor floodplains
- Evaluate feasibility of modifications
 - MIS pump stations, change to gravity sewers
 - Retrofit electronic equipment with ventilation
 - Replace WRF equipment to reduce costs
- Develop vector management plan
- Review rain data for changes in volumes and frequency

MMSD Mitigation (besides adaptation)

- Renewable energy/ energy conservation
- Gl to sequester carbon
- Carbon footprint

MMSD 2007 Greenhouse Gas Emissions 229,600 metric tons CO2eq/year

Karen Sands, AICP Milwaukee Metropolitan Sewerage District

ksands@mmsd.com 414-225-2123

www.mmsd.com www.h2ocapture.com

