

NASA DEVELOP National Program Focusing on Partnerships with project example

NASA Ames Research Center

Jenna Williams Center Lead

Where DEVELOP Fits @ NASA

NASA Applied Sciences

National Application Areas + Capacity Building Elements

What is DEVELOP?

"Shaping the future by integrating Earth observations into global decision making."

Participants + Earth Observations + Decision Makers

DEVELOP bridges the gap between NASA Earth Science and society, building capacity in both its participants and end-user organizations to better prepare them to handle the environmental challenges that face society.

Where are all the DEVELOPers?

12 Locations

10 week projects

3 Terms/year fall, spring, summer

Types of Parnerships

Partner: Umbrella term for any outside organization DEVELOP engages with through projects, at our locations, or other activities

Types of Partners

- End-User: Receives results and methodologies from DEVELOP and can <u>use</u> the project's products or methodologies to make a decision or policy.
- Collaborator: Works directly with a DEVELOP project team and provides some kind of leveraged resource (advising, data, model, software, funding, etc.), but are <u>not actually using the project's</u> <u>products or methodologies to make a decision or policy</u>.
- Boundary Organization: Organization or individual that disseminates the project's results to other end-users, decision-makers, policy-makers, etc.

Parner Expectations

DEVELOP

Project Development

- Project planning (2 to 3 telecons)
- Proposal review/input
- Relevant Data (if applicable)
- Pre-term project survey

In Term Communication

- Bi-monthly telecons
- Email correspondence
- Site-visit (if applicable)

Post Project

- Post-term project survey
- Follow up on implementation/use of results

2017 Summer Portfolio

19 States & 7 Countries Impacted

30 Projects

77% Domestic 23% International

Application Areas Addressed

LAKE ERIE WATER RESOURCES

Leveraging Earth observations to Identify Harmful Algal Blooms in Lake Erie's Western Basin

Presenter

Jenna Williams

DEVELOP Research Team

Rachel Green
John Dilger
Rachel Johnson

NASA Ames Research Center

2017 Spring

Study Area & Period

Area

Western Basin of Lake Erie

Period

- March to October 2015
- March to November 2016

Factoids

- ▶ 12th largest lake by area in the world
- Shallowest of the 3 basins
- 3 intake cribs in the western basin

Land Use in Lake Erie Watershed, Ohio

Agriculture

Water Bare

Wetland

Forested

Developed

Terminology

- ► HAB: Harmful Algae Bloom
- Microcystis: Genus of Algae
- Microcystin: Toxin produced by microcystis
- Cyanobacteria: phylum of algae in Lake Erie
- Phycocyanin: pigment specific to cyanobacteria
- Chlorophyll-a: pigment in all algae

Community Concerns

- Rising lake temperatures
- Increased eutrophication
 - Nitrogen & phosphorus
- More frequent harmful algal bloom (HAB) events
 - Overgrowths of algae in water
- Health threats to humans, fish, and wildlife from contact with cyanobacterial toxins
- **Economic** losses

Community Concerns

Impact

- Carroll Township: emergency water shutdown
 - September, 2013
- Toledo: do-not-drink advisory August, 2014
 - Half a million residents in Maumee Bay Area without access to potable tap water

WARNING

AN ALGAL BLOOM IS PRESENT AND/OR ALGAL TOXINS HAVE BEEN DETECTED. SWIMMING AND WADING ARE NOT RECOMMENDED FOR:

CHILDREN, PREGNANT OR NURSING WOMEN, THOSE WITH CERTAIN MEDICAL CONDITIONS AND PETS.

FOR MORE INFORMATION GO TO: WWW.OHIOALGAEINFO.COM OR CALL 1-866-644-6224

Earth Observations

Glenn HSI II

Aqua MODIS

Landsat 8 OLI

Temporal Range

	MODIS	Landsat 8	HSI	
Spectral Resolution	36	11	11 170	
Spatial Resolution	1 km	30 m	1 m	
Temporal Resolution	Daily	16 days flexible		
Historical Archive	2002 – present	1972 – present	2013 – present	

Data	3-Aug 2015	21-Sep 2015	7-Oct 2015	18-May 2016	19-Jun 2016	7-Sep 2016		
Landsat 8	х	Х	х	X	X	х		
Aqua MODIS	x	X	x	X	X	X		
HSI		х						
In Situ sampling	x	x			X			

Objectives

- Investigate effectiveness of hyperspectral verses multispectral sensors
- Implement algorithms
- Conduct comparative analysis
- Provide statistical analysis and enhanced algorithm

Image Credit: the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

Image Credit: Jesse Allen and Robert Simmon

Image Credit: Bob McKay

Image Credit: Max Pixel

Methodology

In Situ Data

Ohio State University Stone Laboratory

Acquired in situ datasets (2013-2016)

- Extracted Chlorophyll-a
- Total Microcystin

NOAA GLERL

Acquired weekly *in situ* datasets (2008-2016)

- Particulate and dissolved microcystin
- Extracted phycocyanin
- Extracted chlorophyll-a
- Turbidity

Results: Glenn Hyperspectral Imager II

Algorithms:

- Cl and b700/b600
- Phycocyanin detection
- Cyanobacteria detection
- Indicative of MODIS and Landsat
- Variance in noise

Results: Landsat 8 - OLI

Results: Aqua MODIS

Detected Chlorophyll (µg/L)

Detected Cyanobacteria

Algorithms:

- Chlorophyll-a algorithm not strongly correlated with in situ extracted chlorophylla measurements
- Cyanobacteria Index (CI) is strongly correlated to measured total microcystin

Errors & Uncertainties

- In situ measurements & revisit time
 - Rapid changes in HAB movement
- Incongruent water sample collection between organizations
- Refining algorithms
- Waterbody specific algorithms

Conclusions

Hyperspectral Imagery

- Excellent spatial and temporal resolution
- Processing feasibility
- Aqua MODIS
 - Able to more accurately detect microcystin than chlorophyll-a
- Landsat 8 OLI
 - Results indicate that it is capable of detecting phycocyanin
- Temporal and spatial differences
- Spectral differences
 - Incompatible algorithms

What We've Learned

- Remote sensing can be used to detect HAB events
- Can help monitor rapid changes
- Hyperspectral offers significant benefits for detection as well as limitations
 - Strong need for more insitu datasets

Credit: NOAA GLERL

Future Work

- Consistent and constant monitoring
- In situ sampling for hyperspectral imageryvalidation
- Applying algorithms to imagery before & after bloom period
- Further improvement of Dissolved Microcystin equation by validating accuracy with historical data

Credit: NOAA GLERL

Acknowledgements

NASA Glenn Research Center – Project Partners

John Lekki

Carol Tolbert

NOAA Great Lakes Environmental Research Laboratory - Project Partners

Andrea Vander Woude

DEVELOP Science Advisors

Dr. Juan Torres-Perez, Bay Area Environmental Research Institute

Dr. Sherry Palacios, Bay Area Environmental Research Institute

DEVELOP Management

Brittany Zajic, NASA Ames Research Center DEVELOP Center Lead

Jenna Williams, NASA Ames DEVELOP Assistant Center Lead

Parnter with DEVELOP

If you want to Partner, Collaborate, or Advise

Jenna Williams jenna.l.williams@nasa.gov 650.604.3237

We do ~80 projects a year!
We can always use more ideas
and partners