

Recognizing Green Infrastructure's Multiple Benefits

Hal Sprague
Senior Policy Associate - Natural Resources
Center for Neighborhood Technology

Webinar for Great Lakes and St. Lawrence Cities Initiative, Chicago, IL – April 20, 2011

The Center for Neighborhood Technology

- ☐ 32 year old Chicago-based non-profit
- ☐ Sustainable energy, transportation, natural resource, climate strategies:
 - ☐ Research
 - □ Advocacy
 - ☐ Demonstration projects
 - ☐ Scaling up, replication
- ☐ Green Infrastructure agenda
 - ☐ Planning/Analysis Toolbox
 - □ Policy
 - □ Education
 - □ Practice

National Green Values Calculator

Runoff, Energy, Air, Livability

Benefit	Reduces Stormwater Runoff											Improves Community Livability						
	Reduces Water Treatment Needs	Improves Water Quality	Reduces Gray Infrastructure Needs	Reduces Flooding	Increases Available Water Supply	Increases Groundwater Recharge	Reduces Salt Use	Reduces Energy Use	Improves Air Quality	Reduces Atmospheric CO ₂	Reduces Urban Heat Island	Improves Aesthetics	Increases Recreational Opportunity	Reduces Noise Pollution	Improves Community Cohesion	Urban Agriculture	Improves Habitat	Cultivates Public Education Opportunities
Practice	SS			=	A.	2		#	2	CO2			K	*F3	iii	孝		Ò
Green Roofs	•	•	•	•	0	0	0	•	•		•	•	-	•	-	-		•
Tree Planting			•	•	0	0	0	•	•		0		•			-	•	0
Bioretention & Infiltration	•	•		•	0	0	0	0			•	•	•	0	0	0		•
Permeable Pavement	•	•	•	•	0	-		-			0	0	0	•	0	0	0	0
Water Harvesting		•	•	0	0	-	0	0	-	-	0	0	0	0	0	0	0	0
	Yes — Maybe					0) No											

2 – Step Process

1. Quantification of Benefits

2. Valuation of Quantified Benefits

Framework: Benefits by GI practice

Practice	Practice Units	Resource Units				
Bioretention Benefits	Square feet	Gallons retained on site; pounds of pollutant removed				
Benefits from Trees	Tree (canopy %)	Gallons; degrees cooling; pounds of pollutants				
Permeable Pavement Benefits	Square feet	Gallons; pollutant pounds; decibels				
Green Roof / Green Wall Benefits	Square feet	Gallons; pollutant pounds; degrees cooling; decibels				
Water Harvesting Benefits	Gallons	Gallons; kilowatt hours				

One Tree

Functions, Benefits: Gallons per Tree

One Tree

Functions: Degrees and lbs. per tree

Stephanie Morse, CNT

One Tree

Trees, Benefits, Monetization

Benefit Valuation Groupings

Water – Runoff, treatment costs, quality, erosion, flooding, groundwater and stream recharge, drinking water supply, grey infrastructure needs, de-icing

Energy – Building heating/cooling, conveyance, treatment and storage

Air Quality – Pollutant sequestration, carbon sequestration

Climate – Carbon sequestration, other GHGs

Heat Island – Morbidity, mortality, comfort

Community Livability – Noise, recreation, property value, aesthetics, community cohesion, urban agriculture

Habitat - Biodiversity, ecological health

Public Education

Example: Green Roof BenefitsWater: gallons retained

Equation:

Annual rainfall (inches/year) x green roof area (square feet) x % stormwater retained x 144 square inches/square foot x 0.00433 gallons/cubic inch = **Total Runoff Retained** (gallons/year)

Hypothetical calculation:

(38"/year)(5,000 SF)(60%)(144 SI/SF)(0.00433 gal./CI) = **71,081 gallons/year**

Example: Green Roof BenefitsEnergy: Reduced Use

Heating degree days (°F days) x green roof area (SF) x 24 hours/day x $\Delta U =$ **Reduced Heating Energy** (Btu/SF)

Where

U = heat transfer coefficient, or 1/R; and

R = a measure of thermal resistance

Example: Green Roof Benefits Energy: reduced use

$$\Delta U = 1/R_{cr} - 1/R_{gr} = Btu/11.34(SF)(°F)(hrs) - Btu/23.4(SF)(°F)(hrs)$$

6,630°F(Chicago heating degree days) x 24 hr/day x ΔU = 7,231.75 (Btu/SF)

Hypothetical:

 $7,231.75 \times 5,000 \text{ SF} = 36,158,750 \text{ Btu/year}$

Example: Green Roof Benefits Air Quality: Reduced Criteria Pollutants

Green roof area (SF) x avg. annual pollutant uptake/deposition (lbs/SF/yr) = **Total Air Pollutant Uptake/Deposition** (lbs/yr)

Nitrogen oxide:

5,000 SF x 0.0003885 lbs/SF = 1.9425 lbs/yr

Water (treatment cost saved):

Chicago: 71,081 gal. x \$0.0000919/gal. = <u>\$6.53 ann.</u> savings (MWRD)

Portland, OR: 71,091 gal x \$0.0005/gal = <u>\$35.54 ann.</u> savings

Grand Rapids, MI: 71,091 gal x \$0.00263/gal = <u>\$186.97</u> ann. savings

Energy (cost): 36,158,750 Btu x \$0.0000123/Btu = \$444.75 ann. savings

Air Quality (pollutant removal cost):

1.9425 lbs NO_2 x \$3.34/lb = \$6.49 ann. savings

More examples: Water (treatment cost saved):

- Chicago City Hall Green Roof = 20,300 sq. ft., retaining about 288,590 gal/yr
- Using MWRD cost, this building alone provides \$26/yr in savings to MWRD
- In Portland, this building would save \$144/yr
- Chicago has well over 2 million sq. ft. of green roof currently installed, saving MWRD about \$2,588/yr

Energy (cost saved):

Chicago City Hall Green Roof = 20,300 sq. ft.

With 7,231.75 Btu/sf saved x 20,300 x \$0.0000123/Btu = \$1806 in annual energy savings for the City

With 2 million sq ft of green roof installed, <u>building owners in Chicago are collectively saving \$177,901/yr!</u>

[Note: in Chicago there are >7M sq. ft. of green roof completed or under permit review.]

Air Quality (pollutant removal cost):

Chicago City Hall Green Roof = 20,300 sq. ft.

 $0.0003885 \text{ lbs/SF} \times 20,300 = 7.9 \text{ lbs NO}_2 \times \$3.34/\text{lb} = \$26$ annual savings

With 2 million sq. ft. green roof in Chicago, the community is saving about \$2,595/yr in NO₂ removal costs

Note: This does not include benefits of reducing other criteria pollutants, such as SOx, PM, HC, CO

Groundwater Recharge: main. of stream min. flow; source water reliability; prevention of land subsidence

Improved Water Quality: ecosystem health; land value; aesthetics

Reduced Flooding: property damage cost mitigation

Reduced CSO Mitigation: infrastructure rehabilitation cost reduction

Reduced De-icing: annual reduction in cost of de-icing labor and material

Cost of Flooding: Chicago, IL

Flood damage cost estimate

- Through October 2010, there were almost 15,000 phone calls about basement flooding received by Chicago's 3-1-1 assistance hotline.
- That number probably represents a fraction of the basements that were flooded, since not everyone calls 311 to complain.
- If the actual number were only 15,000 flooded basements, and the average property damage per basement was \$500, the resulting total cost of the damage for that 10-month period would have been about \$7.5 Million.

ANY QUESTIONS??

Three More Examples in Using the Guide

- 1. 100 trees in a neighborhood
- 2. 3 porous alleys (18000 sq ft) in a neighborhood
- 3. Vegetated swales in a 1-acre parking lot

Tree Planting

\ \	Small tree	Medium tree	Large tree
Rainfall interception	292 gallons	1,129 gallons	2,162 gallons

Equation for quantifying the benefit:

Number of trees x average annual runoff retained per tree (gallons/tree/yr) = total runoff retained per year (gallons/yr)

Example: $100 \times 1,129 = 112,900 \text{ gallons/yr}$

Planting 100 Trees

Valuation of Quantified Benefits:

Runoff reduced (gallons/yr) x avoided treatment cost per gallon (dollars/gallon) = avoided stormwater treatment cost (dollars/yr)

Examples:

Chicago: $112,900 \text{ gal } \times \$0.0000919/\text{gal} = \$10$

Portland: 112,900 gal x \$0.0005/gal = \$56

Grand Rapids: $112,900 \text{ gal } \times \$0.00263/\text{gal} = \$297$

Porous Alleys

Quantifying the Benefits:

Annual precipitation (inches) x area of GI feature + drainage area (sq ft) x percent retained (%) x 144 sq in/sq ft x 0.00433 gal/cu in = Total runoff reduction (gallons/yr)

Example: 38" x 18,000 sq ft (3 alleys) x 80% x 144 sq in/sq ft x 0.00433 gal/cu in = 341,190 gal/yr

Three Porous Alleys

Valuing the Quantified Benefits: Runoff reduced (gallons/yr) x avoided treatment cost per gallon (dollars/gallon) = avoided stormwater treatment cost (dollars/yr)

Examples:

Chicago: $341,190 \text{ gal } \times \$0.0000919/\text{gal} = \$31/\text{yr}$

Portland: $341,190 \text{ gal } \times \$0.0005/\text{gal} = \$171/\text{yr}$

Grand Rapids: $341,190 \text{ gal } \times \$0.00263/\text{gal} = \$897$

Vegetated Swales

Quantifying the Benefits:

Annual precipitation (inches) x area of GI feature + drainage area (sq ft) x percent retained (%) x 144 sq in/sq ft x 0.00433 gal/cu in = Total runoff reduction (gallons/yr)

Example: 38" x 43,560 sq ft (1-acre) x 80% x 144 sq in/sq ft x 0.00433 gal/cu in = 825,680 gal/yr

Swales in a 1-acre Parking Lot

Valuing the Quantified Benefits:

Runoff reduced (gallons/yr) x avoided treatment cost per gallon (\$\$/gallon) = avoided stormwater treatment cost (dollars/yr)

Examples:

Chicago: 825,680 gal x \$0.0000919/gal = \$75

Portland: $825,680 \text{ gal } \times \$0.0005/\text{gal} = \$412$

Grand Rapids: 825,680 gal x \$0.0023 = \$2,172

Valuation Note

The following benefits must be added to the above values:

- Value of improved water quality
- Reduced infrastructure capital and O& M costs
- Reduced costs from basement flooding
- Value of reliable regulatory compliance
- Value of reliable clean water supply sources
- Value of groundwater recharge for surface waters

Valuation Note

More benefits:

- Reduced cost of winter de-icing materials
- Reduced treatment energy costs
- Reduced heating energy costs
- Reduced cooling energy costs
- Reduced health care costs from improved air quality
- Improved health of aquatic ecosystems and of associated terrestrial ecosystems

Valuation Note

Still more benefits:

- Increased property values
- Value of increased recreational opportunities
- Value of increased habitat for flora and fauna
- Value of improved community aesthetics
- Value of reduced noise pollution
- Value of public education opportunities

Thank You

http://www.cnt.org/water/ hal@cnt.org

Benefit Guide link:

http://www.cnt.org/repository/gi-values-guide.pdf

American Rivers: http://www.americanrivers.org/

